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E-mail: fizwam@univ.gda.pl and matmm@univ.gda.pl

Received 23 December 2000, in final form 26 April 2001
Published 13 July 2001
Online at stacks.iop.org/JPhysA/34/5863

Abstract
Drawing on results of Choi, Størmer and Woronowicz, we present a nearly
complete characterization of certain important classes of positive maps. In
particular, we construct a general class of positive linear maps acting between
two matrix algebras B(H) and B(K), where H and K are finite-dimensional
Hilbert spaces. It turns out that elements of this class are characterized by
operators from the dual cone of the set of all separable states on B(H ⊗
K). Subsequently, the relation between entanglements and positive maps is
described. Finally, a new characterization of the cone B(H)+ ⊗B(K)+ is given.

PACS numbers: 02.10.-v, 03.65.Fd, 03.65.Ta, 03.67.-a

1. Introduction

While discussing non-relativistic quantum mechanics, one must mention fundamental open
problems which are related to open questions of modern mathematics. A good example is
the separability problem, i.e. the question whether a state of a composite system does not
contain any quantum correlations. On the other hand (cf [6,10,12] and references therein) the
separability question is strongly linked to the problem of classification and characterization
of positive operator maps on C∗-algebras. Although many results concerning classification
of positive maps have been obtained [2–5, 9, 13, 14, 16, 18, 23], the complete classification of
positive maps still remains an essentially open question. In this paper we present some new
results concerning separable states, decomposable maps and transposable states.

The presentation of these new results and their proofs require some former results which
are scattered across the mathematical literature. Thus, they are not very easily accessible to
the physics audience. Consequently, we present a survey of the current state of knowledge
concerning the classification of positive maps together with our new results on that topic. We
also include somewhat simplified proofs of the already established results. Finally, we present
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a classification which should be very useful for a study of the separability problem in the
context of quantum information theory. To illustrate this point we will look more closely at
the relation between nonseparable states and the Peres–Horodecki approach.

The paper is organized as follows. In section 2 some basic definitions are recalled.
In section 3 we use the construction of Choi [2] for classification of positive maps and
decomposable maps, while in section 4 we are concerned with characterization of separable
states. Finally, section 5 is devoted to characterization of the operators in B(H⊗K) that belong
to cone B(H)+ ⊗ B(K)+, provided that H and K are finite-dimensional Hilbert spaces.

2. Definitions and notations

For any C∗-algebra A by A+ we denote the set of all positive elements of A. If A is a unital
C∗-algebra then a state on A is a linear functional φ : A −→ C such that φ(A) � 0 for every
A ∈ A+ and φ(1I) = 1, where 1I is the unit of A. The set of all states on A is denoted by SA.
For any T ⊂ SA we define the dual cone

T d = {A ∈ A : φ(A) � 0 for every φ ∈ T }.
It is easy to check that the definition of a state implies A+ ⊂ T d for every T ⊂ SA. We say
that the family T determines the order of A when T d = A+.

A linear map � : A1 −→ A2 between C∗-algebras A1 and A2 is called positive if
�(A+

1) ⊂ A+
2 . For k ∈ N we consider a map �k : Mk ⊗ A1 −→ Mk ⊗ A2 where Mk denotes

the algebra of k × k matrices with complex entries and �k = idMk
⊗ �. We say that � is

k-positive if the map �k is positive. The map � is said to be completely positive when � is
k-positive for every k ∈ N.

For any Hilbert space L by B(L) we denote the C∗-algebra of all bounded linear operators
acting on L. Let us recall that for a finite-dimensional L every state φ on B(L) has the form
of φ(A) = Tr(
A), where 
 is a uniquely determined density matrix, i.e. an element of B(L)+

such that Tr 
 = 1.
Throughout our paper H and K will be fixed finite-dimensional Hilbert spaces. We also fix

orthonormal bases {ei}ni=1 and {fj }mj=1 of the spaces H and K respectively, where n = dim H,
m = dim K. For simplicity we write S, SH, SK instead of SB(H)⊗B(K), SB(H), SB(K), respectively.
By τH, τK, τH⊗K we denote transposition maps on B(H), B(K), B(H ⊗ K), respectively,
associated with bases {ei}, {fj }, {ei ⊗ fj }, respectively. Let us note that for every finite-
dimensional Hilbert space L the transposition τL : B(L) −→ B(L) is a positive map but not
completely positive (in fact it is not even 2-positive).

A positive map � : B(H) −→ B(K) is called decomposable if there are completely
positive maps �1, �2 : B(H) −→ B(K) such that � = �1 + �2 ◦ τH. Let P , PC and PD

denote the set of all positive, completely positive and decomposable maps from B(H) to B(K),
respectively. Note that

PC ⊂ PD ⊂ P (2.1)

(see also [1]).
A state ϕ ∈ S is said to be separable if it can be approximated by states of the form

ϕ =
N∑
n=1

anϕ
H
n ⊗ ϕK

n

where N ∈ N, ϕH
n ∈ SH, ϕK

n ∈ SK for n = 1, 2, . . . , N , an are positive numbers such that∑N
n=1 an = 1, and the state ϕH

n ⊗ ϕK
n is defined as ϕH

n ⊗ ϕK
n (A ⊗ B) = ϕH

n (A)ϕ
K
n (B) for
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A ∈ B(H), B ∈ B(K). The set of all separable states on the algebra B(H) ⊗ B(K) is denoted
by Ssep. A state which is not in Ssep is called entangled or nonseparable.

Finally, let us define the family of transposable states on B(H ⊗ K)

Sτ = {ϕ ∈ S : ϕ ◦ (idB(H) ⊗ τK) ∈ S}.
Note that due to the positivity of the transposition τK every separable state ϕ is transposable,
so

Ssep ⊂ Sτ ⊂ S. (2.2)

In the next sections we describe relations between (2.1) and (2.2).
To conclude, we should remark that the application of the remarkable theorems of

Tomiyama [20] and Kadison [7] leads to the following result.

Theorem 2.1. The family Ssep of separable states on B(H) ⊗ B(K) is ∗-weakly dense in S if
and only if dim H = 1 or dim K = 1.

3. Construction of positive maps

Now we want to present a general construction of a linear positive map S : B(H) −→ B(K).
In the sequel we assume that both H and K have dimension greater than 1.

For any element x ∈ H we define the linear operator Vx : K −→ H ⊗ K by Vxz = x ⊗ z

for z ∈ K. By Ex,y where x, y ∈ H we denote the one-dimensional operator on H defined by
Ex,yu = 〈y, u〉x for u ∈ H. For simplicity reasons, if {ei}ni=1 is a basis of H, we write Vi and
Eij instead of Vei and Eei,ej for any i, j = 1, 2, . . . , n.

Let us start with the observation that for any H ∈ B(H ⊗ K) we have

〈z ⊗ v,Hx ⊗ y〉 =
∑
ij

〈ei, z〉〈ej , x〉〈ei ⊗ v,Hej ⊗ y〉 =
∑
ij

〈z, Eij x〉〈v, V ∗
i HVjy〉

=
〈
z ⊗ v,

(∑
ij

Eij ⊗ V ∗
i HVj

)
x ⊗ y

〉

where x, z ∈ H and y, v ∈ K. Thus, we have the following decomposition of H :

H =
n∑

i,j=1

Eij ⊗ V ∗
i HVj .

This suggests that for a fixed H one can define the map SH : B(H) −→ B(K)

SH (Ex,y) = V ∗
x HVy (3.1)

where x, y ∈ H. The correspondence between H and SH was observed by Choi [2]. The
purpose of this section is to describe properties of the map SH .

Recall that for two matrices A = [aij ]i,j=1,2,...,n and B = [bij ]i,j=1,2,...,n one can define
the Hadamard product A ∗ B = [aij bij ]i,j=1,2,...,n. We will need the following lemma.

Lemma 3.1 ([8], Exercise 2.8.41). If both matrices A and B are positive definite then their
Hadamard product A ∗ B is also positive definite.

The main property of the map SH is described by the following proposition.

Proposition 3.2. If H ∗ = H and H ∈ Sd
sep then SH is a positive map. Moreover, for any

positive map S : B(H) −→ B(K) there exists uniquely determined selfadjoint operator
H ∈ Sd

sep such that S = SH .
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Proof. To prove positivity of SH , observe first that it is invariant with respect to the ∗-operation:

SH (E
∗
x,y) = SH (Ey,x) = V ∗

y HVx = (V ∗
x HVy)

∗ = SH (Ex,y)
∗.

Secondly, it is enough to prove that SH maps any one-dimensional projector Ex,x , where
‖x‖ = 1, into a positive operator. To this end we note

〈y, S(Ex,x)y〉 = 〈y, V ∗
x HVxy〉 = 〈Vxy,HVxy〉 = 〈x ⊗ y,Hx ⊗ y〉 � 0

where the last inequality follows from the fact that H ∈ Sd
sep.

Suppose that S is any positive map. Define

H = (idB(H) ⊗ S)

( n∑
k,l=1

Ekl ⊗ Ekl

)
. (3.2)

The positivity assumption and the fact that
∑

kl Ekl ⊗ Ekl is selfadjoint imply that H is
selfadjoint. In order to prove that H ∈ Sd

sep, one should show that

ϕH ⊗ ϕK(H) � 0 (3.3)

for any ϕH ∈ SH and ϕK ∈ SK. To this end we observe that

ϕH ⊗ ϕK(H) =
∑
kl

ϕH(Ekl)ϕ
K(S(Ekl)). (3.4)

Recall that for any state φ ∈ SH the matrix [φ(Ekl)]k,l=1,2,...,n is positive definite. Thus, both
matrices [ϕH(Ekl)] and [ϕK(S(Ekl))] are positive definite. The right-hand side of equality (3.4)
is the sum of all entries of the Hadamard product [ϕH(Ekl)]∗[ϕK(S(Ekl))] which is also positive
(cf lemma 3.1). The sum of entries of a positive definite matrix is positive, so (3.3) is proved.
To prove that SH = S, it is enough to show that SH (Eij ) = S(Eij ) for any i, j = 1, 2, . . . , n.
But, for y,w ∈ K we have

〈y, SH (Eij )w〉 = 〈y, V ∗
i HVjw〉 =

〈
ei ⊗ y,

(∑
kl

Ekl ⊗ S(Ekl)

)
ej ⊗ w

〉

=
∑
kl

〈ei, Eklej 〉〈y, S(Ekl)w〉 = 〈y, S(Eij )w〉.

Thus, the proposition is proved. �
The next proposition characterizes the case when SH is a completely positive map.

Following Choi [2], we have

Proposition 3.3 ([2]). SH is a completely positive map if and only if H is a positive operator.

Corollary 3.4. If dim H � 2 and dim K � 2 then there exists H such that SH is a positive but
not completely positive map.

Proof. In order to prove this statement one should prove that there exists a selfadjoint operator
H ∈ B(H ⊗ K) such that

(i) ϕ(H) � 0 for all ϕ ∈ Ssep;
(ii) H �∈ B(H ⊗ K)+.

But, from the theorem of Tomiyama mentioned in the previous section we get that Ssep does
not determine the order of B(H ⊗ K), so B(H ⊗ K)+ is a proper subset of Sd

sep. Any element
H of Sd

sep \ B(H ⊗ K)+ satisfies both conditions. �
The next proposition describes the properties of positive decomposable maps. It will be

done by means of the family of transposable states. We will need the following lemma.
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Lemma 3.5. Let k ∈ N and A ∈ Mk ⊗ B(H). Suppose that both A and (τMk
⊗ idB(H))(A) are

positive inMk⊗B(H). Then for every vectorx1, x2, . . . , xk ∈ K the mapψ : B(H ⊗ K) −→ C

defined as

ψ(C) =
k∑

i,j=1

n∑
p,r=1

〈hi ⊗ ep,Ahj ⊗ er〉〈ep ⊗ xi, Cer ⊗ xj 〉 C ∈ B(H ⊗ K)

is a positive functional on B(H ⊗ K) such that ϕ ◦ (τH ⊗ idB(K)) is also positive.

Proof. First of all note that for every state ϕ ∈ S we have the following equivalence:

ϕ ∈ Sτ ⇐⇒ ϕ ◦ (τH ⊗ idB(K)) ∈ S.
Observe that

ψ(C) =
∑
i,j,p,r

〈hi ⊗ ep ⊗ ep ⊗ xi, (A ⊗ C)hj ⊗ er ⊗ er ⊗ xj 〉

=
〈∑

i,p

hi ⊗ ep ⊗ ep ⊗ xi, (A ⊗ C)
∑
i,p

hi ⊗ ep ⊗ ep ⊗ xi

〉
.

If C is positive then A⊗C is positive in the algebra Mk ⊗B(H)⊗B(H)⊗B(K), so ψ(C) � 0.
On the other hand,

ψ(τH ⊗ idB(K))(C) =
∑
i,j,p,r

〈hi ⊗ ep,Ahj ⊗ er〉〈er ⊗ xi, Cep ⊗ xj 〉

=
∑
i,j,p,r

〈hi ⊗ er , (idMk
⊗ τH)(A)hj ⊗ ep〉〈er ⊗ xi, Cep ⊗ xj 〉

=
〈∑

i,r

hi ⊗ er ⊗ er ⊗ xi, [(idMk
⊗ τH)(A) ⊗ C]

∑
i,r

hi ⊗ er ⊗ er ⊗ xi

〉
.

The positivity of (τMk
⊗ idB(H))(A) implies the positivity of (idMk

⊗ τH)(A), so by the above
arguments, if C is positive then ψ(τH ⊗ idB(K))(C) � 0. �
Proposition 3.6. For any selfadjoint operator H the map SH is decomposable if and only if
H ∈ Sd

τ .

Proof. Suppose that SH = S1 + S2 ◦ τH, where S1, S2 are completely positive. Then
H = H1 + (τH ⊗ idB(K))(H2) where H1, H2 are positive operators such that Si = SHi

,
i = 1, 2. Let ϕ ∈ Sτ . Hence,

ϕ(H) = ϕ(H1) + ϕ(τH ⊗ idB(K))(H2) � 0

because both ϕ and ϕ(τH ⊗ idB(K)) are positive functionals.
Conversely, let H ∈ Sd

τ . Suppose that k ∈ N and A = [Aij ]i,j=1,2,...,k ∈ Mk ⊗ B(H)

is such that both A and (τMk
⊗ idB(H))(A) are positive in Mk ⊗ B(H). From the theorem of

Størmer ([15], see also [13]) it is enough to show that (idMk
⊗ SH )(A) is a positive element in

Mk ⊗B(K) � B(Ck ⊗K). To this end let us fix an element h ∈ C
k ⊗K. Let h = ∑k

s=1 hs ⊗xs .
Then

〈h, (idMk
⊗ SH )(A)h〉 =

∑
s,t

∑
i,j

∑
p,r

〈ep,Aij er〉〈hs ⊗ xs, (Fij ⊗ V ∗
pHVr)ht ⊗ xt 〉

=
∑
s,t

∑
i,j

∑
p,r

〈ep,Aij er〉〈hs, Fijht 〉〈ep ⊗ xs,Her ⊗ xt 〉

=
∑
i,j

∑
p,r

〈ep,Aij er〉〈ep ⊗ xi,Her ⊗ xj 〉

where Fij are matrix units in Mk . The last expression is non-negative by lemma 3.5. �
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Remark 3.7. In [5, 9, 13, 17] it was shown that, in general, Sd
τ is a proper subset of Sd

sep.

So far we do not know any general efficient characterization of states from Sτ . However,
we will formulate some sufficient conditions for a state to be in Sτ .

Proposition 3.8. Suppose that 
 is a density matrix of a state ϕ on B(H ⊗ K). Let


 =
n∑

i,j=1

Eij ⊗ 
ij

where 
ij ∈ B(K) for i, j = 1, 2, . . . , n. If the C∗-algebra B generated by elements 
ij is
Abelian, then ϕ ∈ Sτ .

Proof. It is enough to show that (idB(H) ⊗ τK)(
) is a positive operator. This is equivalent
to the statement that (τH ⊗ idB(K))(
) is positive. The theorem of Tomiyama [21] asserts that
for any C∗-algebra A the map (τ ⊗ id) : Mn ⊗ A −→ Mn ⊗ A is positive if and only if A is
Abelian. Hence, as B is Abelian and ρ ∈ B(H) ⊗ B � Mn ⊗ B, the proposition follows. �

Before the next propositions, whose principal significance is that they allow one to write
(or verify) concrete examples of transposable states, we need to make the following remark.

Remark 3.9. Suppose that 
 = [
ij ] is an operator on H ⊗ K. As a result of the Choi–
Robertson lemma [3, 13] one has: [
ij ] is positive if and only if the matrix [
̃ij ]i,j=1,2,...,n−1

is positive, where 
̃ij = 
ij − 
in

−1
nn 
nj for i, j = 1, 2, . . . , n − 1. Hence, replacing 
nn by


nn + ε1I if necessary we may suppose that 
nn is invertible and then by an application of the
above lemma we can restrict ourselves to the case of two-dimensional space K.

Proposition 3.10. Let dim H = 2 and let 
 = [
ij ]i,j=1,2 (
ij ∈ B(K) as in the above
proposition) be a density matrix on the space H ⊗ K. Assume that there exists a vector f ∈ H
and a selfadjoint operator A on H with a property

〈f ⊗ y, {A ⊗ 1I, 
}f ⊗ y〉 = 0

for any y ∈ K, where {·, ·} stands for the anticommutator. Then 
τ = [
ji]i,j=1,2 is also
positive.

Proof. Let {e1, e2} be an orthonormal basis in H. Define

α1 = 〈f, e1〉 α2 = 〈f, e2〉
α3 = 〈Af, e1〉 α4 = 〈Af, e2〉.

From the assumption we have

〈Af ⊗ y, 
 f ⊗ y〉 + 〈
 f ⊗ y,Af ⊗ y〉 = 0

for every y ∈ K. Simple calculations lead to

〈y, [(α1α3 + α1α3)
11 + (α2α3 + α1α4)
12 + (α1α4 + α2α3)
21 + (α2α4 + α2α4)
22]y〉 = 0.

Hence the system {
11, 
12, 
21, 
22} is linearly dependent. According to the Choi theorem [3],
the matrix [
ji]i,j=1,2 is positive. �

Bearing in mind that an element of Mk ⊗ B(K) is positive if and only if it is a sum
of matrices of the form [
∗

i 
j ]i,j=1,...,k , 
1, . . . , 
k ∈ B(K), we can formulate the following
proposition.

Proposition 3.11. Suppose that dim H = 2, [
ij ]i,j=1,2 is a positive operator on H ⊗ K and


ij = 
∗
i 
j for some operators 
1, 
2 ∈ B(K) such that |
2| = (
∗

2
2)
1
2 is an invertible

operator. If b = |
2|−1
∗
1
2|
2|−1 is a hypernormal operator, then the state determined by

[
ij ] is transposable.



On a characterization of positive maps 5869

Proof. By the Choi–Robertson lemma (cf remark 3.9) the positivity of the matrix 
 =
[
∗

i 
j ]i,j=1,2 is equivalent to the following inequality:


∗
1
1 � 
∗

1
2(

∗
2
2)

−1
∗
2
1.

Consequently, we get

|
2|−1|
1|2|
2|−1 � (|
2|−1
∗
1
2|
2|−1)(|
2|−1
∗

2
1|
2|−1) = bb∗.

From the hypernormality of b we have b∗b � bb∗. Hence,

|
2|−1|
1|2|
2|−1 � b∗b.

This inequality is equivalent to the positivity of the transposed matrix 
 = [
∗
j 
i]i,j=1,2. �

We summarize this section with the following theorem.

Theorem 3.12. Define a function � which to every H ∈ B(H ⊗ K) assigns the map SH
defined by (4.1). Then � : Sd

sep −→ P is a bijective convex map. Moreover,

�(Sd) = PC �(Sd
τ ) = PD.

4. Characterization of separable states

As it was mentioned in the introduction, the general structure of positive maps is closely
related to the problem of separable states [6, 12]. In this section, having already described
general classification of positive maps, we want to clarify the relation between nonseparable
states and the Peres–Horodecki approach. To this end we will need a well defined measure of
entanglement E , (cf [11]).

Let us consider C∗-algebras A, B, and let ω be a state on A ⊗ B. Define a map
r : S(A ⊗ B) −→ S(A) by the following formula:

rω(a) = ω(a ⊗ 1I) (4.1)

where a ∈ A, 1I is the unit of B.
First, we prove the following proposition.

Proposition 4.1. If rω is a pure state on A then ω is a product state, i.e.

ω(x ⊗ y) = ωA(x)ωB(y) (4.2)

where ωA ∈ S(A), ωB ∈ S(B) are defined as

ωA(x) = ω(x ⊗ 1I) ωB(y) = ω(1I ⊗ y).

Moreover, if we assume that ω is a pure state, then the converse implication is also valid.

Proof. We present a slight modification of argument given by Takesaki (cf lemma 4.11 in [19]).
Assume y is a positive element in the unit ball of B. If ω(1I ⊗ y) = 0, then from the Cauchy–
Schwarz inequality for states, we have

|ω(x ⊗ y)|2 = ∣∣ω((x ⊗ y
1
2
)(

1I ⊗ y
1
2
))∣∣2

� ω
((
x ⊗ y

1
2
)(
x ⊗ y

1
2
)∗)

ω
((

1I ⊗ y
1
2
)(

1I ⊗ y
1
2
)∗)

= ω
(
xx∗ ⊗ y

)
ω(1I ⊗ y) = 0.

So, (4.2) holds. If ω(1I ⊗ y) = 1 then we apply the above argument to 1I ⊗ (1I − y) instead
of 1I ⊗ y, to obtain ω(x ⊗ (1I − y)) = 0. This can be rewritten as ω(x ⊗ 1I) = ω(x ⊗ y).
Consequently, we get

ω(x ⊗ y) = ωA(x) · 1 = ωA(x)ωB(y).
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Suppose now that 0 < ω(1I ⊗ y) < 1. Let ω1, ω2 ∈ S(A) be defined as

ω1(x) = 1

ω(1I ⊗ y)
ω(x ⊗ y) ω2(x) = 1

1 − ω(1I ⊗ y)
ω(x ⊗ (1 − y))

for x ∈ A. Then, we have

ωA(x) = ω(1I ⊗ y)ω1(x) + (1 − ω(1I ⊗ y))ω2(x).

Hence, by the assumption of our proposition, we have ω1(x) = ω2(x), so that

ω(x ⊗ y) = ω(x ⊗ 1I)ω(1I ⊗ y)

for x ∈ A. As every y ∈ A is a linear combination of positive elements, one can easily extend
the above property on every y ∈ A.

Assume now that ω is a pure product state on A ⊗ B: ω(x ⊗ y) = ωA(x)ωB(y). Suppose
that rω = ωA = λ1ϕ1 + λ2ϕ2 for some states ϕ1, ϕ2 on B(H), λ1, λ2 > 0, λ1 + λ2 = 1. Then

ω(x ⊗ y) = λ1ϕ1(x)ω
B(y) + λ2ϕ2(x)ω

B(y) x ∈ B(H) y ∈ B(K).

By the assumption we obtain ϕ1(x)ω
B(y) = ϕ2(x)ω

B(y) for x ∈ B(H), y ∈ B(K). Consider
this equality for y = 1I to derive ϕ1 = ϕ2. �

Remark 4.2. Lemma 11.3.6 of [8] states that the map r : S(A ⊗ B) −→ S(A) is surjective.

We will need the von Neumann entropy function s : [0, 1] −→ R defined by the formula

s(x) =
{

−xln x for x ∈ (0, 1]

0 for x = 0.

It is easy to show that the function is non-negative. Moreover, s(x) = 0 if and only if x = 0
or x = 1. Now, for every density matrix 
 on H we define its von Neumann entropy:

S(
) = Tr s(
).

Proposition 4.3. S(
) = 0 if and only if 
 is a one-dimensional ortogonal projector.

Proof. The proof is straightforward and we leave it to the reader. �

Again, as in section 3, let us put A = B(H), B = B(K) with finite-dimensional Hilbert
spaces H and K. Furthermore, the density matrix of a state ω will be denoted as 
ω. Let us
observe that ω is a pure state if and only if 
ω is a one-dimensional projector.

Let M1(S) denote the set of all probability Radon measures on S. If µ ∈ M1(S),
then its barycentre is defined as b(µ) = ∫

S φ dµ (φ). For every state ω ∈ S we define
Mω(S) = {µ ∈ M1(S) : b(µ) = ω}.
Definition 4.4. Let ω ∈ S. Then we define

E(ω) = inf
µ∈Mω(S)

∫
S
S(
rφ) dµ (φ) (4.3)

where, as before, r denotes the restriction map, S stands for the entropy: S(
) = Tr s(
) for
any density matrix 
. E(ω) will be called the measure of entanglement of the state ω.

Proposition 4.5. If ω ∈ S, then there exists a measure µ0 ∈ Mω(S) such that E(ω) =∫
S S(
rφ) dµ0 (φ), i.e. the infimum in formula (4.3) is reached.
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Proof. The set M1(S) is compact in ∗-weak topology. Moreover, the map b : M1(S) −→ S,
b(µ) = ∫

S φ dµ (φ) is continuous, hence Mω(S) = b−1({ω}) is a closed subset of M1(S),
so it is compact. Now, consider the map Mω(S) −→ R that assigns

∫
S S(
rφ) dµ (φ) to

every µ ∈ Mω(S). It is continuous because both r : S −→ SB(H), S(
r·) : SB(H) −→ R

are continuous maps. The assertion of the proposition is the consequence of the Weierstrass
theorem. �

Remark 4.6. As a matter of fact, the measure E appeared in [22] under the name of the
formation of entanglement. We prefer to call E the measure of entanglement since we are able
to establish a nice criterion of separability in our next theorem.
Theorem 4.7. Let ω ∈ S. Then, ω is separable if and only if E(ω) = 0.
Proof. Assume E(ω) = 0. Then, by the above proposition, there exists µ0 ∈ Mω(S) such that∫

S
S(
rφ) dµ0 (φ) = 0.

As the map φ �→ S(
rφ) is non-negative and continuous then, by proposition 4.3, 
rφ are
one-dimensional projectors and rφ is a pure state for every φ from the support of the measure
µ0. Consequently, every φ ∈ suppµ0 is a product state (cf proposition 4.1). The measure µ0

can be approximated by finitely supported measures with their supports contained in supp µ0.
Comparing this fact with the equality ω = ∫

S φ dµ (φ), we conclude that ω is separable.
Conversely, assume that ω is a separable state. So,

ω = lim
N

∑
i

λ
(N)
i ω

(N)
i

where ω
(N)
i are product states, and the limit is in the weak sense. Let us notice that ω(N)

i can
be chosen in such a way that rω(N)

i are pure states. Denote µN = ∑
i λ

(N)
i δ

ω
(N)
i

where δ
ω
(N)
i

are

Dirac measures at the point ω(N)
i . Then, the sequence (µN) contains a convergent subsequence

(µNk
) because M1(S) is compact. Let µ0 = limk µNk

. Now we have

ω = lim
k

∫
φ dµNk

(φ) =
∫

φ dµ0 (φ)

so µ0 ∈ Mω(S). Moreover,∫
S(
rφ) dµ0 (φ) = lim

k

∫
S(
rφ) dµNk

(φ) = lim
k

∑
i

λ
(Nk)
i S(


rω
(Nk)

i

) = 0

because rω
(Nk)
i are pure states. Consequently, E(ω) = 0. �

Let us recall that partial transposition idH ⊗ τK : B(H)⊗ B(K) −→ B(H)⊗ B(K) is the
main ingredient of the Peres–Horodecki approach. Let us observe that

r[ω ◦ (idH ⊗ τK)](A) = ω ◦ (idH ⊗ τK)(A ⊗ 1I) = ω(A ⊗ 1I) = (rω)(A)

for A ∈ B(H). Hence,

E(ω) = E(ω ◦ (idH ⊗ τK))
if ω ◦ (idH ⊗ τK) ∈ S, i.e. ω is a transposable state. Therefore, the problem of detecting
nonseparability is reduced to the characterization of Sτ . It is an easy observation that

r(ω ◦ (idB(H) ⊗ S)) = rω

where S : B(H) −→ B(K) is a positive, unital map. Therefore, again, the main question is to
assure that

ω ◦ (idH ⊗ S) ∈ S. (4.4)

As the set of states satisfying relation (4.5), for finite-dimensional case, can be identified with
M+ ⊗ M+ (see [6]), in the next section we provide a characterization of that cone.
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5. Characterization of Mn(C)+ ⊗ Mm(C)+

In this section we characterize elements of the cone B(H)+ ⊗ B(K)+. Recall that, in general,
it is a proper subset of (B(H) ⊗ B(K))+.

Lemma 5.1. Let P be a one-dimensional projector. Then P ∈ B(H)+ ⊗ B(K)+ if and only if

(BPB
τ
P )

2 = BPB
τ
P (5.1)

where BP = [βij ]i=1,...,n; j=1,...,m, βij = 〈ξ, ei ⊗ fj 〉 for ξ ∈ H ⊗ K such that ‖ξ‖ = 1 and
Pξ = ξ .

Proof. Let ω(a) = Tr Pa for a ∈ B(H) ⊗ B(K). Observe that

P ∈ B(H)+ ⊗ B(K)+ ⇐⇒ P = PH ⊗ PK

for some one-dimensional projectors PH ∈ B(H), PK ∈ B(K). Hence, P ∈ B(H)+ ⊗ B(K)+

if and only if ω is a product state. By the last statement of proposition 4.1 this is equivalent
to the fact that rω is a pure state on B(H), hence 
 is a one-dimensional projector on B(H),
where 
 is the density matrix of the state rω.

Firstly, let us observe that 
 = Tr2 P , where Tr2 is the partial trace Tr2(a ⊗ b) = a Tr b,
a ∈ B(H), b ∈ B(K).

Let {ei}, {fj } be orthonormal bases in H, K respectively. Define Uj : H −→ H ⊗ K by
Ujx = x ⊗ fj , j = 1, 2, . . . , m. For every x, y ∈ H we have

〈x,Tr2 Py〉 =
∑
j

〈x ⊗ fj , Py ⊗ fj 〉 =
〈
x
∑
j

U ∗
j PUjy

〉
.

So, 
 = Tr2 P = ∑
j U

∗
j PUj and it is clearly selfadjoint.

Let us examine the conditions leading to the idempotent property of 
. To this end we
start with derivation of the formula for UlU

∗
k . We observe that for any x ∈ H

〈U ∗
k ei ⊗ fj , x〉 = 〈ei ⊗ fj , Ukx〉 = 〈ei ⊗ fj , x ⊗ fk〉 = 〈δjkei, x〉.

Hence U ∗
k ei ⊗ fj = δjkei , and

UlU
∗
k ei ⊗ fj = δjkei ⊗ fl.

Suppose 
2 = 
 and take an arbitrary vector x ∈ H. Then


2x = (Tr2 P)2x =
∑
jk

U ∗
j PUjU

∗
k PUkx =

∑
jk

U ∗
j PUjU

∗
k P x ⊗ fk

=
∑
jk

U ∗
j PUjU

∗
k 〈ξ, x ⊗ fk〉ξ =

∑
jk

〈ξ, x ⊗ fk〉U ∗
j PUjU

∗
k

∑
pr

βprep ⊗ fr

=
∑
jkpr

〈ξ, x ⊗ fk〉βprU
∗
j PUjU

∗
k ep ⊗ fr =

∑
jkpr

〈ξ, x ⊗ fk〉βprU
∗
j P δkrep ⊗ fj

=
∑
jkp

〈ξ, x ⊗ fk〉βpkU
∗
j P ep ⊗ fj

=
∑
jkp

〈ξ, x ⊗ fk〉βpkU
∗
j 〈ξ, ep ⊗ fj 〉

∑
st

βst es ⊗ ft

=
∑
jkp

∑
st

〈ξ, x ⊗ fk〉βpkβpjβstU
∗
j es ⊗ ft =

∑
jkps

〈ξ, x ⊗ fk〉βpkβpjβsj es

=
∑
s

(∑
jkp

〈ξ, x ⊗ fk〉βpkβpjβsj

)
es.
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On the other hand


x = Tr2 Px =
∑
k

U ∗
k PUkx =

∑
k

U ∗
k P x ⊗ fk

=
∑
k

〈ξ, x ⊗ fk〉U ∗
k

∑
st

βst es ⊗ ft =
∑
kst

〈ξ, x ⊗ fk〉βstU
∗
k es ⊗ ft

=
∑
kst

〈ξ, x ⊗ fk〉βst δkt es =
∑
s

(∑
k

〈ξ, x ⊗ fk〉βsk

)
es.

Hence ∑
k

〈ξ, x ⊗ fk〉βsk =
∑
jkp

〈ξ, x ⊗ fk〉βpkβpjβsj

for every x ∈ H, s = 1, . . . , n. So,∑
k

βikβsk =
∑
jkp

βikβpkβpjβsj

for every i, s = 1, . . . , n. Hence, (5.1) follows. �

As a corollary we get the following theorem.

Theorem 5.2. A positive operator A on H ⊗ K belongs to B(H)+ ⊗ B(K)+ if and only if there
exists a spectral decomposition of A

A =
∑
i

λiPi

where Pi are one-dimensional projectors and (BPi
Bτ
Pi
)2 = BPi

Bτ
Pi

for every i, where BPi
were

defined in lemma 5.1.
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